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Abstract. The magnetic properties of the La2CuO4 are analyzed by means of the paramagnetic solution
of the Hubbard model within the composite operator method. The experimental findings of the inelastic
neutron magnetic scattering [R. Coldea et al., Phys. Rev. Lett. 86, 5377 (2001)] for the spin spectrum,
the spin-wave intensity and the behavior of the dispersion at the zone boundary are well described by our
results although the difference in phase. The Hubbard model emerges has a minimal model capable to
describe the anomalous magnetic behavior of such a strongly correlated material.

PACS. 75.50.-y Studies of specific magnetic materials – 71.10.-w Theories and models of many-electron
systems – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

There is a spread wide consensus that some high temper-
ature cuprate superconductors, in particular the LSCO
family, are well described by the t-J model, which reduces
to the Heisenberg model at half-filling. A recent experi-
ment [1] casts some doubts on this belief. By using in-
elastic neutron scattering as a probe to analyze magnetic
excitations in the parent compound La2CuO4, it has been
shown that nearest-neighbor interactions among the Cu2+

spins are not sufficient to explain the experimental behav-
ior. Along the antiferromagnetic boundary of the Brillouin
zone the spin wave energy is not constant, as predicted [2]
by the spin wave theory of the nearest-neighbor Heisen-
berg model, but exhibits a noticeable dispersion. By intro-
ducing wave-vector-dependent quantum corrections to the
spin-wave energies, a dispersion along the zone boundary
has been obtained [3–6], but with an opposite sign to the
experimental results of reference [1]. As shown in refer-
ence [1], in order to describe the observed dispersion rela-
tion one needs to generalize [7–11] the Heisenberg model
by introducing higher-order couplings: J ′ and J ′′, which
describe second- and third-nearest neighbor interactions,
respectively; Jc which describes ring exchange interactions
coupling four spins at the corners of the CuO4 square pla-
quette. On the other hand, as noticed by the authors of
reference [1], these higher-order interactions are naturally
present in the single-band Hubbard model. This is due to
the electron hopping among the Cu sites which induces
charge fluctuations with finite double occupancy and can
be explicitly seen by expanding the Hubbard Hamiltonian
up to the t4/U3-order. As shown in references [7–9,11],
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one obtains J ′ = J ′′ = 4t4/U3 and Jc = 80t4/U3. The
same result is not true for the t-J model, where only the
first-nearest neighbor coupling J = 4t2/U is taken into
account. As matter of fact, a two-pole approximation of
the two-dimensional Hubbard model, in the context of the
composite operator method (COM) [12–16], yields [17] a
double occupancy at n = 1 and T = 0 that in the limit
U � t goes as D = 2 t2

U2 + O( t4

U4 ) showing that there al-
ways exists a finite double occupancy for any value of the
Coulomb repulsion U which reduces the number of spins
involved in the magnetic response.

The fact that first-nearest neighbor spin interactions
are not sufficient to describe the experimental situa-
tions has also been reported in other circumstances: Ra-
man scattering, infrared absorption, Sr2CuO2Cl2 [18],
Sr14Cu24O41 compound (see Ref. [1] for discussion and
related references).

Summarizing, there is experimental evidence that in
some highly correlated systems the electronic excitations
induce magnetic interactions beyond the nearest-neighbor
term. The Heisenberg and t-J models are not sufficient
and a minimal model which contains higher-order terms
can be given by the Hubbard model.

2 The bosonic sector of the Hubbard model

In this work, we analyze the magnetic properties of the
Hubbard model in the paramagnetic phase. These prop-
erties are described by two-particle Green’s functions
(2PGF) and to compute them there exist mainly two ap-
proaches. The first one is to expand the 2PGF in terms
of the single-particle propagators. The second one is to
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calculate directly the 2PGF by means of the equations of
motion. Both approaches require some approximation. In
the first case, one can choose to use the diagrammatic ex-
pansion of the RPA and compute the fermionic lines (i.e.,
the electronic Green’s functions) in the mean field approx-
imation [19]; a different approximation scheme is based on
the use of the Hubbard propagators as building blocks of
the fermionic loops [14,15]. Here, we will follow the second
approach, that based on the equations of motion, in the
framework of the composite operator method.

The two-dimensional single-band Hubbard model is
described by the following Hamiltonian

H =
∑
ij

[− 4t αij c†(i) c(j) − µ δij c†(i) c(j)

+ U δij n↑(i)n↓(j)
]
. (1)

The notation is the following. c†(i) = (c†↑(i), c
†
↓(i)) is

the electron creation operator in spinorial notation at the
site i [i = (i, t)] and nσ(i) = c†σ(i) cσ(i) is the number
operator for spin σ at the site i; t is the transfer in-
tegral, µ is the chemical potential and U is the on-site
Coulomb repulsion, αij is the projector operator on the
first-nearest-neighbor sites (see Appendix). Hereafter, for
a generic operator ζ(i), we will use the notation ζα(i) to
indicate its projection on the first-nearest-neighbor sites
(see Appendix).

Let us introduce the composite bosonic field [20]

Nν(i) =

(
nν(i)

ρν(i)

)
(2)

where

nν(i) = c†(i)σν c(i) (3)

ρν(i) = c†(i)σν cα(i) − c†α(i)σν c(i). (4)

We note that nν(i) is the charge (ν = 0) and spin (ν =
1, 2, 3) density operator, with σν = (1, σ), σν = (−1, σ)
and σ are the Pauli matrices. The composite field Nν(i)
satisfies the Heisenberg equation

i
∂

∂t
Nν(i) = Jν(i) =

(−4t ρν(i)

−4t lν(i) + U κν(i)

)
(5)

with

κν(i) = c†(i)σν ηα(i) − η†(i)σν cα(i) + η†α(i)σν c(i)

− c†α(i)σν η(i) (6)

lν(i) = c†(i)σν cα2
(i) + c†α

2
(i)σν c(i) − 2c†α(i)σν cα(i).

(7)

We linearize the equation of motion (5) by projecting
the source Jν(i) on the basis Nν(i) and obtain

i
∂

∂t
Nν(i, t) ∼=

∑
j

ε(ν)(i, j)Nν(j, t). (8)

In the paramagnetic phase, ε(ν)(k), the Fourier trans-
form of the energy matrix ε(ν) (i, j), reads as

ε(ν)(k) = m(ν)(k)
[
I(ν)(k)

]−1

(9)

where

I(ν)(k) = F 〈[Nν(i, t), N †
ν (j, t)

]〉
(10)

m(ν)(k) = F 〈[Jν(i, t), N †
ν (j, t)

]〉
(11)

〈· · · 〉 indicates the thermal average in the grand canonical
ensemble and the symbol F denotes the Fourier transform.
Let us consider the causal thermal Green’s function

G(ν)(i, j) =
〈
T
[
Nν(i)N †

ν (j)
]〉

(12)

and the correlation function

C(ν) (i, j) =
〈
Nν (i) N †

ν (j)
〉 · (13)

By means of the equation of motion (8), the Fourier
transforms of these quantities satisfy the following
equations [

ω − ε(ν)(k)
]
G(ν)(k, ω) = I(ν)(k) (14)[

ω − ε(ν)(k)
]
C(ν)(k, ω) = 0. (15)

The solution of these equations gives [21]

G(ν)(k, ω) = −i
(2π)3

a2
δ(2)(k) δ(ω)Γν +

2∑
n=1

σ(n,ν)(k)

×
[

1 + fB(ω)

ω − ω
(ν)
n (k) + i δ

− fB(ω)

ω − ω
(ν)
n (k) − i δ

]

(16)

C(ν)(k, ω) =
(2π)3

a2
δ(2)(k) δ(ω)Γν

+ 2π
2∑

n=1

δ
[
ω − ω(ν)

n (k)
]
[1 + fB(ω)] σ(n,ν)(k)

(17)

where a is the lattice constant, which will be set 1 here-
after, and fB(ω) = 1

eβω−1
is the Bose function. The en-

ergy spectra and the spectral density functions have the
expressions

ω(ν)
n (k) = (−)n

ω(ν)(k) (18)

ω(ν)(k) =

√√√√−4t
m

(ν)
22 (k)

I
(ν)
12 (k)

(19)

σ(n,ν)(k) =
1
2
I
(ν)
12 (k)

(− 4t

ω
(ν)
n (k)

1

1 −ω(ν)
n (k)
4t

)
· (20)

The explicit expressions of the functions I
(ν)
12 (k) and

m
(ν)
22 (k) are reported in Appendix. The matrix Γν is the
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zero frequency constant; as discussed in reference [21], this
function is not determined by the equations of motion or
by the boundary conditions and must be calculated by
other means. The charge and spin equal-time correlation
functions are given by

〈nν(i)nν(j)〉 =

Γ11ν − 2t

(2π)2

∫
ΩB

dk eik(i−j) I
(ν)
12 (k)

ω(ν)(k)
coth

β ω(ν)(k)
2

(21)

where ΩB is the volume of the unit cell in the reciprocal
space.

Within the linear response theory, the charge and spin
susceptibilities are given by the opposite of the retarded
thermal Green’s function

χ(ν)(k, ω) = −F 〈R [nν(i)nν(j)]〉

= −
2∑

n=1

σ
(n,ν)
11 (k)

ω − ω
(ν)
n (k) + i δ

· (22)

In particular, the static susceptibilities have the expression

χ(ν)(k) =

[
I
(ν)
12 (k)

]2
m

(ν)
22 (k)

· (23)

All these expressions are only formal because depend
on a set of parameters which have to be calculated. In
particular, we can distinguish: (i) external parameters: n,
T , U ; (ii) fermionic correlators: Cα, Cλ, C�, D, Eβ, Eη;
(iii) bosonic correlators: aν , bν , cν , dν ; (iv) zero-frequency
constants: Γ11ν . All these parameters are defined in Ap-
pendix where you can also find the relations in which they
appear in connection with the physical quantities analyzed
so far.

The fermionic correlators can be calculated accord-
ing to the scheme given in references [12–16], where the
fermionic sector of the Hubbard model has been solved in
the framework of the COM in the two-pole approxima-
tion. In order to fix the bosonic parameters we use the
following procedure. The condition that the static suscep-
tibilities χ(ν) (0) are finite single-value functions gives the
following expressions for the parameters bν , cν and dν

bν = aν + 3D + Eη + 2Eβ − 6
t

U

(
Cα+Cλ−2C�

)
(24)

cν = aν − D + Eη − 2Eβ + 6
t

U

(
Cα + Cλ − 2C�

)
(25)

dν = aν − D − 3Eη + 2Eβ−6
t

U

(
Cα+Cλ−2C�

)
. (26)

The remaining bosonic correlators aν are determined
by means of the Pauli principle which requires

〈n(i)n(i)〉 = n + 2D (27a)
〈nk(i)nk(i)〉 = n − 2D k = 1, 2, 3. (27b)

Finally, the zero frequency constants are fixed by set-
ting the ergodic values: Γ11ν = δν0 n2.

ππ π π πππ π

ω
≈

≈

Fig. 1. The energy spectrum ω(3)(k) of the spin propagator
along the principal directions for n = 1, T = 10 K and U =
8.8t. The experimental data are taken from reference [1].

Once the external parameters have been set, the anal-
ysis will follow these steps: 1) we solve the fermionic sector
and obtain the relative correlators as in references [12–16];
2) we solve the self-consistent equations for aν and obtain
the bosonic propagators; 3) we compute the response func-
tions (the susceptibilities) from the causal bosonic Green’s
functions.

3 Results

In Figure 1, we report the energy spectrum ω(3)(k) of
the spin propagator along the principal directions and
compare it with the experimental data of reference [1]
obtained for La2CuO4 by means of inelastic magnetic neu-
tron scattering. We have chosen the value of the temper-
ature (T = 10 K) according to the experimental set-up;
the value of the transfer integral (t = 0.3 eV) and of the
Coulomb repulsion (U = 2.6 eV) have been chosen in or-
der to fit the experimental points and they are within the
ranges (t = 0.3± 0.02 eV; U = 2.2 ± 0.4 eV) suggested in
reference [1]. The agreement with the experimental data
is very good all over the momentum space except around
Q = (π, π). As a matter of fact, the experimental data
refer to the antiferromagnetic phase of the material (the
experimental spectrum gets soft at Q and, obviously, our
paramagnetic solution cannot fully describe such behav-
ior). However, it is worth noting that the Hubbard model
at half-filling present so strong antiferromagnetic correla-
tions that they also show up in the paramagnetic phase
through a quite pronounced minimum at Q. Very good
results have been also obtained within a dressed RPA re-
solved in the antiferromagnetic phase by Peres et al. [19].

The spin-wave intensity, calculated within the present
approach, is reported in Figure 2 and compared with the
experimental data of reference [1]. The agreement is again
very good over all the momentum space and shows once
more the capability of the Hubbard model, within our for-
mulation, to catch the physics of such a strongly correlated
system.
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Fig. 2. The spin-wave intensity along the principal directions
for n = 1, T = 295 K and U = 8.8t. The experimental data
are taken from reference [1].

In order to get a deeper comprehension of the tendency
towards an antiferromagnetic ordering, clearly shown by
our results (we reported a quite pronounced minimum in
the spin spectrum and a very large peak in the spin-wave
intensity, both at Q), we have computed the antiferro-
magnetic correlation length ξ, within our approach, by
expanding in series the static susceptibility (23) around
k = Q. We have obtained

χ(3)(k) =
χ(3) (Q)

1 + ξ2 |k − Q|2 + O
(
|k − Q|4

)
. (28)

Explicit calculations showed that, within our approach,
the antiferromagnetic correlation length ξ can be cast in
the following form

ξ2 =
1
8

(
χ(3) (Q)
χ(3) (0)

− 1
)

. (29)

In Figures 3 and 4, we report the antiferromagnetic
correlation length ξ and the value of the energy spec-
trum of the spin propagator at Q, ω(3) (Q), as functions
of temperature and Coulomb repulsion, respectively. As
expectable, it is evident the enhancement of the antiferro-
magnetic correlation length ξ on lowering the temperature
and on increasing the Coulomb repulsion. As a matter of
fact, a large value of the Coulomb repulsion U (larger than
U ≈ 9) results counterproductive as reduces the value of
the exchange integral J . This latter results fully effective,
within the paramagnetic phase, only in the intermediate-
strong coupling regime, where the expansion in t/U be-
gins to be applicable and the resulting value J = 4t2/U is
not too small. As regards the energy spectrum of the spin
propagator at Q, ω(3) (Q), we report a behavior just the
opposite to that of ξ on the whole ranges of temperature
and potential strength. After this analysis we can conclude
that although a very strong tendency towards an antiferro-
magnetic ordering can be recognized in the behavior of all
reported quantities, the finite value of ω(3) (Q) at T = 0
for any finite value of the Coulomb repulsion U shows the

ξ
ω π π

ξ
ω π π

Fig. 3. The antiferromagnetic correlation length ξ and the
value of the energy spectrum of the spin propagator at Q,
ω(3) (Q), as functions of the temperature T for n = 1 and
U = 4t and 8t.

ξ
ω π π

Fig. 4. The antiferromagnetic correlation length ξ and the
value of the energy spectrum of the spin propagator at Q,
ω(3) (Q), as functions of the Coulomb repulsion U for n = 1
and T = 0.01t.

absence of an antiferromagnetic instability at half filling in
our paramagnetic solution. This could be due to the lack
of self-energy corrections in the present formulation. At
any rate, it is worth noticing that we reported a very rich
antiferromagnetic solution for the fermionic sector of the
Hubbard model within our formulation in reference [16],
but the complexity of the calculations have not permitted
yet the extension of such solution to the bosonic sector.

Coming back to our comparison with the experimental
results of reference [1], we can estimate the zone-boundary
spin-wave dispersion through the quantity

κ(U, T ) = 2
ω (π, 0) − ω (3π/2, π/2)
ω (π, 0) + ω (3π/2, π/2)

· (30)

In Figure 5 we plot κ as a function of T for U = 8.8t.
We see that the dispersion decreases as T increases in
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κ

Fig. 5. �, definition in the text, as a function of the temper-
ature T for n = 1 and U = 8.8t.

κ

Fig. 6. �, definition in the text, as a function of the Coulomb
repulsion U for n = 1 and T = 0.01t.

agreement with the experimental data. Actually, in ref-
erence [1], a much bigger variation in temperature is re-
ported. The quantitative discrepancy can be understood
as a consequence of the difference in phase existing be-
tween the analytical and the experimental data. Within
the antiferromagnetic phase, which is the one experimen-
tally observed, the dispersion at the zone boundary is very
sensitive to the competition between the low energy scale
J and the temperature T . Our data, computed within the
paramagnetic phase, are very much less sensitive to it. κ

as a function of U for T = 0.01t is reported in Figure 6.
The dispersion is also reduced on increasing the Coulomb
repulsion and goes to zero only for U infinity. This result is
in agreement with the behavior known for the simple t-J
model, which is the strong coupling limit of the Hubbard
model. In fact, the simple t-J model, by the absence of the
extended exchange couplings which vanish as t4/U4, does
not present any dispersion along the zone boundary. The
experimental data show such dispersion and consequently
suggest an intermediate-strong coupling regime which re-
sult inaccessible to the simple t-J model.

Fig. 7. The energy spectrum ω(3)(k) of the spin propagator
for n = 1, T = 0.01t and U = 8.8t.

Finally, in Figure 7 we show the spin spectrum on the
entire Brillouin zone for the same values of the external
parameters. The picture clearly shows the correct behavior
at (0, 0), the minimum at Q and the dispersion along the
zone boundary.

4 Conclusions

In conclusion, we have studied the magnetic properties of
the La2CuO4 by means of the paramagnetic solution of the
Hubbard model within the composite operator method.
The experimental findings of the inelastic neutron mag-
netic scattering [1] for the spin spectrum, the spin-wave
intensity and the behavior of the dispersion at the zone
boundary are very well described by our results and con-
firm the idea, which is also suggested by many recent
publications, both theoretical and experimental, that the
cuprates fall in the intermediate-strong coupling regime.
This regime cannot be properly described by the simple t-
J model, which is derived from the Hubbard model in the
strong coupling regime. Extended exchange couplings, dy-
namically generated in the Hubbard model at the higher
order of the expansion in t/U , seem relevant to describe all
the experimental features of the dispersion. The Hubbard
Hamiltonian results still as the best candidate to catch
the physical behavior of these materials.

We wish to thank S.-W. Cheong, G. Aeppli and R. Coldea for
providing us with the experimental data [1].

Appendix

For a generic operator ζ(i), we use the notation ζα(i) to
indicate the projection on the first-nearest-neighbor sites

ζα(i, t) =
∑
j

αij ζ(j, t) (31)
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αij being the projector operator:

αij =
1
N

∑
k

eik(i−j)α(k) (32)

α(k) =
1
2

[cos (kx a) + cos (ky a)] . (33)

The notation ζα2
(i) stands for

ζα2
(i, t) =

∑
jl

αij αjl ζ (l, t)

=
1
4
[
ζ(i, t) + 2ζβ (i, t) + ζη(i, t)

]
(34)

where by ζβ(i, t) and ζη(i, t), we denote the projection on
the second-nearest-neighbor sites:

βij =
1
N

∑
k

eik(i−j)β(k)

β(k) =
1
2
{cos [(kx + ky) a] + cos [(kx − ky) a]} (35)

ηij =
1
N

∑
k

eik(i−j)η(k)

η(k) =
1
2

[cos (2kx a) + cos (2ky a)] . (36)

The notation ζα3
(i) stands for

ζα3
(i, t) =

∑
jlm

αij αjl αlm ζ (m, t)

=
1
16
[
9ζα (i, t) + ζλ(i, t) + 6ζ�(i, t)

]
(37)

where by ζ�(i, t) and ζλ(i, t), we denote the projection on
the third-nearest-neighbor sites:

�ij =
1
N

∑
k

eik(i−j)�(k) (38)

�(k) =
1
4
{cos [(2kx + ky) a] + cos [(2kx − ky) a]

+ cos [(kx + 2ky) a] + cos [(kx − 2ky) a]} (39)

λij =
1
N

∑
k

eik(i−j)λ(k) (40)

λ(k) =
1
2

[cos (3kx a) + cos (3ky a)] . (41)

As it can be easily verified, in the paramagnetic phase
the normalization matrix I(ν) does not depend on the in-
dex ν; charge and spin operators have the same weight.
The two matrices I(ν)and m(ν) have the following form in
momentum space

I(ν)(k) =


 0 I

(ν)
12 (k)

I
(ν)
12 (k) 0


 (42)

m(ν)(k) =


m

(ν)
11 (k) 0

0 m
(ν)
22 (k)


 (43)

where

I
(ν)
12 (k) = 4 [1 − α(k)] Cα (44)

m
(ν)
11 (k) = −4t I

(ν)
12 (k) (45)

m
(ν)
22 (k) = −4t Ilνρν (k) + U Iκνρν (k) (46)

and

Ilνρν (k) =
3
4

[1 − α(k)]
(
12Cα + Cλ + 6C�

)
− 3

4
[1 − η(k)]

(
Cα + Cλ + 2C�

)
+

1
4

[1 − λ(k)] Cλ +
3
2

[1 − �(k)] C�

− 3 [1 − β(k)] (Cα + C�) (47)

Iκνρν (k) = −2 [1 − α(k)] D + [1 − 2α(k)]
(
2Eβ + Eη

)
+ η(k)Eη + 2β(k)Eβ

+ [1 − 2α(k)] aν +
1
4

[bν + 2β(k)cν + η(k)dν ] .

(48)

The various parameters appearing above are de-
fined as:

Cα =
〈
cα(i) c†(i)

〉
(49)

Cλ =
〈
cλ(i) c†(i)

〉
(50)

C� =
〈
c�(i) c†(i)

〉
(51)

D = 1 − 〈ξ(i) ξ†(i)
〉− 2

〈
η(i) η†(i)

〉
(52)

Eβ =
〈
cβ(i) η†(i)

〉
(53)

Eη =
〈
cη(i) η†(i)

〉
(54)

aν = 2
〈
c†(i)σν cα(i) c†(i)σν cα(i)

〉
− 〈cα†(i)σν σλ σν cα(i)nλ(i)

〉
(55)

bν = 2
〈
c†(i)σν c†(i)σν [c(i) c(i)]α

〉
− 〈c†(i)σν σλ σν c(i)nα

λ(i)
〉

(56)

cν = 2
〈
c†(i)σν c†(iη)σν c(iα) c(iα)

〉
− 〈c†(i)σν σλ σν c(iη)nλ(iα)

〉
(57)

dν = 2
〈
c†(i)σν c†(iβ)σν c(iα) c(iα)

〉
− 〈c†(i)σν σλ σν c(iβ)nλ(iα)

〉
(58)

where we used the notation

i = (ix, iy, t) (59)

iα = (ix + a, iy, t) (60)

iη = (ix + 2a, iy, t) (61)

iβ = (ix + a, iy + a, t). (62)
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